Speed Sign Recognition Using Sequential Cascade AdaBoost Classifier with Color Features

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speed Sign Recognition using Shape-based Features

An efficient shape-based recognition system of U.S. speed limit road signs is presented in this paper. The proposed system accomplishes speed sign detection and recognition processes using three main stages, namely, geometrical-based detection of rectangular road signs, shape-based segmentation and feature extraction, and pattern classification using a K-nearest neighbor classifier (KNN). Twent...

متن کامل

Obscenity Detection Using Haar-Like Features and Gentle Adaboost Classifier

Large exposure of skin area of an image is considered obscene. This only fact may lead to many false images having skin-like objects and may not detect those images which have partially exposed skin area but have exposed erotogenic human body parts. This paper presents a novel method for detecting nipples from pornographic image contents. Nipple is considered as an erotogenic organ to identify ...

متن کامل

AdaBoost Gabor Fisher Classifier for Face Recognition

This paper proposes the AdaBoost Gabor Fisher Classifier (AGFC) for robust face recognition, in which a chain AdaBoost learning method based on Bootstrap re-sampling is proposed and applied to face recognition with impressive recognition performance. Gabor features have been recognized as one of the most successful face representations, but it is too high dimensional for fast extraction and acc...

متن کامل

Traffic Sign Recognition Using Extreme Learning Classifier with Deep Convolutional Features

Traffic sign recognition is an important but challenging task, especially for automated driving and driver assistance. Its accuracy depends on two aspects: feature extractor and classifier. Current popular algorithms mainly use convolutional neural networks (CNN) to execute both feature extraction and classification. Such methods could achieve impressive results but usually on the basis of an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multimedia Information System

سال: 2019

ISSN: 2383-7632

DOI: 10.33851/jmis.2019.6.4.185